Kuat Lentur Beton Ramah Lingkungan dengan Penggunaan Limbah Serbuk Aren Sebagai Subtitusi Agregat Halus

Guntur Nugroho

Abstract


Pembangunan pada bidang konstruksi telah banyak mengalami perkembangan serta inovasi dalam segala aspek termasuk dalam pembuatan beton dengan menggunakan material limbah. Tujuan penelitian ini adalah untuk memanfaatkan penggunaan Limbah Serbuk Aren (LSA) untuk bahan campuran beton agar dapat mengurangi dan membatasi pencemaran lingkungan dari limbah padat sisa hasil industri. Pemanfaatan Limbah Serbuk Aren (LSA) dilakukan dengan cara mensubstitusikan limbah terhadap agregat halus untuk mendapatkan hasil kuat lentur beton dengan variasi 0 persen, 10 persen, 20 persen, 30 persen, dan 40 persen. Metode yang digunakan adalah pengujian eksperimen di laboratorium dengan benda uji berukuran 15x15x60cm dengan jumlah 3 benda uji pada setiap variasi campuran. Hasil penelitian menunjukan bahwa nilai kuat lentur 0 persen, 10 persen, 20 persen, 30 persen, dan 40 persen sebesar 4,12 MPa, 4,09 MPa, 3,60 MPa, 3,44 MPa dan 3,11 MPa. Berdasarkan analisis kuat lentur beton pada penelitian ini dapat simpulkan bahwa kadar campuran Limbah Serbuk Aren (LSA) sebesar 10 persen, 20 persen, 30 persen, dan 40 persen dapat menurunkan nilai kuat lentur 0,73 persen, 12,63 persen, 16,5 persen, 24,52 persen.

Keywords


Agregat Halus; Kuat Lentur Beton; Limbah Serbuk Aren (LSA)

References


K. V Prasad, V. Vasugi, R. Venkatesan, and N. S. Bhat, “Critical causes of time overrun in Indian construction projects and mitigation measures,” Int. J. Constr. Educ. Res., vol. 15, no. 3, pp. 216–238, 2019.

A. S. Gill and R. Siddique, “Durability properties of self-compacting concrete incorporating metakaolin and rice husk ash,” Constr. Build. Mater., vol. 176, pp. 323–332, 2018.

H. Nouri, M. Safehian, and S. M. Mir Mohammad Hosseini, “Life cycle assessment of earthen materials for low-cost housing a comparison between rammed earth and fired clay bricks,” Int. J. Build. Pathol. Adapt., vol. 41, no. 2, pp. 364–377, 2023.

A. C. P. Martins et al., “Steel slags in cement-based composites: An ultimate review on characterization, applications and performance,” Constr. Build. Mater., vol. 291, p. 123265, 2021.

G. U. Fayomi, S. E. Mini, O. S. I. Fayomi, and A. A. Ayoola, “Perspectives on environmental CO2 emission and energy factor in Cement Industry,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 331, no. 1, p. 12035.

A. Pakdel, H. Ayatollahi, and S. Sattary, “Embodied energy and CO2 emissions of life cycle assessment (LCA) in the traditional and contemporary Iranian construction systems,” J. Build. Eng., vol. 39, p. 102310, 2021.

B. V. V. Reddy and K. S. Jagadish, “Embodied energy of common and alternative building materials and technologies,” Energy Build., vol. 35, no. 2, pp. 129–137, 2003.

J. S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner, “Sustainable development and climate change initiatives,” Cem. Concr. Res., vol. 38, no. 2, pp. 115–127, 2008.

S. Karthik, P. R. M. Rao, P. O. Awoyera, R. Gobinath, and R. R. Karri, “Alkalinity and strength properties of concrete containing macro silica and ground granulated blast furnace slag,” in 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018), 2018, p. 106.

P. Murthi, P. Awoyera, P. Selvaraj, D. Dharsana, and R. Gobinath, “Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment,” Aust. J. Civ. Eng., vol. 16, no. 2, pp. 122–128, 2018.

V. Karthika, P. O. Awoyera, I. I. Akinwumi, R. Gobinath, R. Gunasekaran, and N. Lokesh, “Structural properties of lightweight self-compacting concrete made with pumice stone and mineral admixtures,” Rev. Rom. Mater., vol. 48, no. 2, pp. 208–213, 2018.

S. Anandaraj, J. Rooby, P. O. Awoyera, and R. Gobinath, “Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments,” Constr. Build. Mater., vol. 197, pp. 862–870, 2019.

G. P. Hammond and C. I. Jones, “Embodied energy and carbon in construction materials,” Proc. Inst. Civ. Eng., vol. 161, no. 2, pp. 87–98, 2008.

N. Makul, “Combined use of untreated-waste rice husk ash and foundry sand waste in high-performance self-consolidating concrete,” Results Mater., vol. 1, p. 100014, 2019.

A. Adesina and P. Awoyera, “Overview of trends in the application of waste materials in self-compacting concrete production,” SN Appl. Sci., vol. 1, no. 9, p. 962, 2019.

L. Giresini, C. Casapulla, and P. Croce, “Environmental and economic impact of retrofitting techniques to prevent out-of-plane failure modes of unreinforced masonry buildings,” Sustainability, vol. 13, no. 20, p. 11383, 2021.

J. P. Moretti, S. Nunes, and A. Sales, “Self-compacting concrete incorporating sugarcane bagasse ash,” Constr. Build. Mater., vol. 172, pp. 635–649, 2018.

H. J. Araghi, I. M. Nikbin, S. R. Reskati, E. Rahmani, and H. Allahyari, “An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack,” Constr. Build. Mater., vol. 77, pp. 461–471, 2015.

A. Rao, K. N. Jha, and S. Misra, “Use of aggregates from recycled construction and demolition waste in concrete,” Resour. Conserv. Recycl., vol. 50, no. 1, pp. 71–81, 2007.

A. A. Aliabdo, M. Abd Elmoaty, and A. Y. Aboshama, “Utilization of waste glass powder in the production of cement and concrete,” Constr. Build. Mater., vol. 124, pp. 866–877, 2016.

E. A. Olanipekun, K. O. Olusola, and O. Ata, “A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates,” Build. Environ., vol. 41, no. 3, pp. 297–301, 2006.

A. Sivakrishna, P. Awoyera, S. Oshin, D. Suji, and R. Gobinath, “Fabrication of precast concrete slab panels incorporating foundry sand and blast furnace slag as a potential wall insulator,” J. Eng. Sci. Technol., vol. 14, no. 4, pp. 2386–2398, 2019.

P. Awoyera, R. Gobinath, S. Haripriya, and P. Kulandaisami, “New light weight mortar for structural application: assessment of porosity, strength and morphology properties,” in International Conference on Emerging Trends in Engineering (ICETE) Emerging Trends in Smart Modelling Systems and Design, 2020, pp. 59–65.

Z. Z. Ismail and E. A. Al-Hashmi, “Recycling of waste glass as a partial replacement for fine aggregate in concrete,” Waste Manag., vol. 29, no. 2, pp. 655–659, 2009.

M. S. Imbabi, C. Carrigan, and S. McKenna, “Trends and developments in green cement and concrete technology,” Int. J. Sustain. Built Environ., vol. 1, no. 2, pp. 194–216, 2012.

V. Radonjanin, M. Malešev, S. Marinković, and A. E. S. Al Malty, “Green recycled aggregate concrete,” Constr. Build. Mater., vol. 47, pp. 1503–1511, 2013.

G.-P. Zehil and J. J. Assaad, “Feasibility of concrete mixtures containing cross-linked polyethylene waste materials,” Constr. Build. Mater., vol. 226, pp. 1–10, 2019.

D. Rumšys, D. Bačinskas, E. Spudulis, and A. Meškėnas, “Comparison of material properties of lightweight concrete with recycled polyethylene and expanded clay aggregates,” Procedia Eng., vol. 172, pp. 937–944, 2017.

Y. Qin, X. Zhang, J. Chai, Z. Xu, and S. Li, “Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete,” Constr. Build. Mater., vol. 194, pp. 216–225, 2019.

J. Thorneycroft, J. Orr, P. Savoikar, and R. J. Ball, “Performance of structural concrete with recycled plastic waste as a partial replacement for sand,” Constr. Build. Mater., vol. 161, pp. 63–69, 2018.




DOI: https://doi.org/10.24967/teksis.v10i1.3953

Article Metrics

Abstract view : 634 times
PDF (Bahasa Indonesia) : 252 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
Teknika Sains: Jurnal Ilmu Teknik is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License