KAJIAN DESAIN STRUKTUR BENDUNG DAN KOLAM OLAKAN DARI BAHAYA REMBESAN (SEEPAGE)

Oleh: ANWAR Dosen Teknik Sipil Universitas Sang Bumi Ruwa Jurai

ABSTRAK

Bendung selain digunakan sebagai peninggi elevasi muka air, juga dapat digunakan sebagai alat ukur debit air. Bendung dan bendungan masing-masing memiliki fungsi yang berbeda. Bendung dibuat sebagai peninggi elevasi muka air sehingga dengan kondisi permukaan air yang telah dibendung air akan dialirkan ke tempat yang diinginkan. Sedangkan bendungan digunakan untuk menampung aliran, bila terjadi over flow diharapkan tidak terjadi banjir besar yang diakibatkan terlalu tingginya elevasi permukaan air yang mengalir pada saluran tersebut, atau dengan kata lain fungsi daripada bendungan tersebut sebagai pengendali banjir. Salah satu masalah yang sering terjadi pada bendung adalah adanya rembesan pada tubuh bendungan tersebut. Rembesan terjadi apabila bangunan harus mengatasi beda tinggi muka air dan jika aliran yang disebabkannya meresap masuk ke dalam tanah di sekitar bangunan. Kerusakan bendungan di lokasi penelitian diakibatkan banjir dan seepage. Hasil perhitungan curah hujan maksimum rancangan kala ulang 50 tahunan untuk stasiun Basohan adalah 294,097 mm. Hasil perhitungan debit maksimum banjir rancangan dengan berbagai metode adalah sebesar 341,243 m³/dtk dengan metode HSS Snyder. Berdasarkan data debit rancangan yang ada diperoleh ketinggian mercu yang dibutuhkan yaitu tipe bulat dengan elevasi 91,3076 m di hulu dan 90,2958 di hilir bendung. Hasil perhitungan panjang *coveran* untuk mengurangi energi rembesan yaitu sepanjang 3 m. Hasil perhitungan rembesan di dasar tubuh bendung diperoleh sepanjang 29,47 m. Dengan demikian panjang konstruksi dasar bendungan minimal harus sepanjang 29,47 m. Untuk meredam aliran pada saat keluar, maka didesain kolam olakan sepanjang 6 m dengan tebal lantai olak sebesar 0.8 m.

Kata kunci: bending, over flow, banjir, konstruksi, aliran.

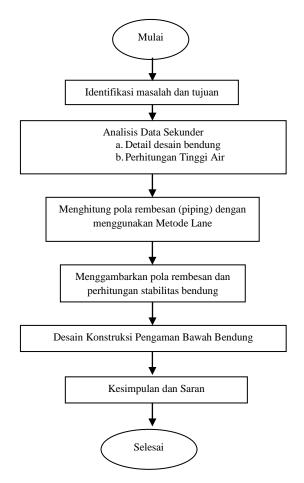
I. PENDAHULUAN

Tanah merupakan kumpulan butirbutiran mineral alam yang melekat tetapi sehingga masih mudah tidak erat, dipisah-pisahkan. Tanah yang lokasinya pindah dari tempat terjadinya akibat aliran air, angin, dan es disebut transported soil. Tanah yang tidak pindah lokasinya dari tempat terjadinya disebut Tanah residual soil. yang bersifat rembesan kecil dan daya rembes besar

disebabkan ukuran pori-pori dan butiranbutiran tanah yang kecil, sedangkan tanah yang bersifat rembesan besar dan daya rembes kecil disebabkan ukuran pori-pori dan butiran tanah yang besar (Bowles, 1989).

Bendung selain digunakan sebagai peninggi elevasi muka air, juga dapat digunakan sebagai alat ukur debit air. Bendung dan bendungan masing-masing memiliki fungsi yang berbeda. Bendung

dibuat sebagai peninggi elevasi muka air sehingga dengan kondisi permukaan air yang telah dibendung air akan dialirkan ke tempat yang kita inginkan. Sedangkan bendungan digunakan untuk menampung aliran, bila terjadi over flow diharapkan tidak terjadi banjir besar yang diakibatkan terlalu tingginya elevasi air yang mengalir pada permukaan saluran tersebut, atau dengan kata lain bendungan fungsi daripada tersebut sebagai pengendali banjir.


Salah satu masalah yang sering terjadi pada bendung adalah adanya rembesan pada tubuh bendungan tersebut. Rembesan terjadi apabila bangunan harus mengatasi beda tinggi muka air dan jika aliran yang disebabkannya meresap masuk ke dalam tanah di sekitar bangunan. Aliran ini mempunyai pengaruh yang dapat merusak stabilitas bangunan karena terangkutnya bahanbahan halus sehingga dapat menyebabkan erosi bawah tanah (piping). Jika erosi bawah tanah sudah terjadi, maka terbentuklah lajur rembesan (jaringan aliran) antara bagian hulu dan hilir bangunan. Air rembesan yang mengalir pada lapisan tanah akan mengangkut butiran tanah yang lebih halus menuju lapisan tanah yang kasar. Erosi butiran mengakibatkan turunnya tahanan aliran

air dan naiknya gradien hidrolis. Bila kecepatan aliran membesar akibat dari tahanan pengurangan aliran yang berangsur-angsur turun, akan terjadi erosi butiran yang lebih besar lagi, sehingga membentuk pipa-pipa di dalam tanah yang dapat mengakibatkan keruntuhan pada tubuh bendung. Oleh karena itu diperlukan penelitian suatu untuk menganalisis pola aliran rembesan pada bendung.

II. METODOLOGI

Penelitian Kajian Desain Struktur Bendung ini dilakukan di Bendung Way Basohan Kabupaten Lampung Barat.

Sumber data yang akan digunakan dalam penyusunan penelitian ini adalah pengumpulan data melalui observasi data sekunder. Sumber data yang diperoleh penulis dalam penelitian ini berasal dari Balai Besar Wilayah Sungai Mesuji Sekampung yang terdiri dari data desain bangunan bendung, dan data tinggi muka air di bendung.

Gambar 1. Bagan Alir Penelitian

III. HASIL DAN PEMBAHASAN

Kondisi Kelengkapan Bangunan Utama Bendung Way Basohan

Kondisi bangunan dan kelengkapan Bangunan Utama Bendung Way Basohan dari hasil investigasi awal dapat dijelaskan secara ringkas sebagai berikut:

Tubuh bendung, dengan mercu berbentuk bulat dengan kemiringan bidang hilir 1 : 1 dan sebelah hulu tegak, kondisi tubuh bendung yang dulunya ada setengah bangunan (tegak) sekarang sudah hancur semuanya.

Gambar 2 Kondisi Tubuh Bendung yang Telah Rusak Berat

Gambar 3 Kondisi Bangunan Pembilas dan Sayap Hilir Bendung Way Basohan yang Sudah Tertutupi Rumput Liar

Tembok pangkal bendung, berupa pasangan batu kali dengan kondisi tembok pangkal bendung pada sebelah kiri sudah mengalami keretakan pada beberapa titik.

Tembok sayap udik, berupa pasangan batu kali yang disatukan dengan tembok pangkal tanggul yang menempel langsung pada tebing sungai, hanya ada pada bagian kiri. Masih dapat dikatakan dalam kondisi mungkin untuk dipertahankan, walaupun pada pangkalnya terjadi kerusakan.

Tembok sayap hilir, dari pasangan batu kali merupakan tembok perkuatan tebing, dengan kedalaman koperan tembok kaki 2.50 m dari elevasi dasar *coupure*, alinyemen disatukan dengan tembok sayap udik *Bottom Controller*, masih dapat dikatakan baik walaupun perlu penambahan perkuatan jika dipertahankan.

Pembilas, elevasi ambang intake = EL+ 48.570, tinggi skimming wall = 1.00 m, lebar pintu intake = 2 x 0.6 m dengan pilar 1 x 0.80 m, lahan yang dialiri sekitar 260 Ha. Lantai pembilas berada di bawah intake (*undersluice*) dengan elevasi + 43.036, kondisi saat ini telah pecah-pecah pada bangunan pintu intake dan di belakang pintu tanah telah amblas akibat proses kelongsoran.

Analisis Data Curah Hujan Maksimum

Pada dasarnya, penentuan data curah hujan harian maksimum satu stasiun per tahun dipilih dan dibandingkan dengan curah hujan pada hari yang sama pada stasiun lain. Curah hujan harian maksimum masih yang didapat merupakan hujan titik (point rainfall), sehingga perlu dihitung curah hujan DAS (area rainfall). Untuk menghitung curah hujan DAS besaran ini dapat ditempuh dengan beberapa metode yang sampai saat ini lazim digunakan, yaitu dengan rata-rata Aljabar, metode Polygon Thiessen dan Metode Isohyet. Ada lagi satu metode perataan hujan yang terkait dengan metode Hidrograf Satuan yakni dengan menghitung koefisien reduksi B.

Tabel 1 Data Curah Hujan Maksimum
Tahunan Stasiun Basohan

No		Tanggal Keja	dian	Curah Hujan (mm)
1	2	April	2015	170.0
2	25	Desember	2014	288.0
3	13	Februari	2013	185.0
4	21	April	2012	182.0
5	6	Januari	2011	180.0
6	13	Februari	2010	231.0
7	26	Januari	2009	74.0
8	31	Agustus	2008	173.0
9	15	Desember	2007	115.0
10	16	Mei	2006	123.0
11	27	April	2005	195.0
12	25	Februari	2004	117.0
13	8	Januari	2003	110.0
14	30	Juni	2002	145.0
15	6	Januari	2001	127.0

Sumber : Diolah Dari Data Curah Hujan Harian (BBWS Mesuji Sekampung)

Jumlah (n = banyaknya data) dan interval tahun pengamatan dari masing-masing stasiun pada penelitian ini tidak sama, hal ini dikarenakan waktu mulai pemakaian alat penakar hujan untuk tiap stasiun berbeda dan terjadinya kerusakan alat sehingga ada tahun pengamatan yang tidak memiliki data hujan. Dalam proses perhitungan analisis frekuensi, data hujan untuk tiap-tiap durasi nantinya diurutkan dari yang terkecil ke yang besar.

Penentuan Hujan Rancangan

Tabel 2 Perhitungan Sebaran Distribusi Data Hidrologi Stasiun Basohan

NI.	v:	Xi -	(Xi -	(Xi -	(V: V)4
No	Xi	$\mathbf{X}_{\mathrm{rerata}}$	$X_{rerata})^2$	$X_{rerata})^3$	(Xi - X _{rerata}) ⁴
	(mm)	(mm)	(mm) ²	(mm) ³	(mm) ⁴
1	74.00	-87.0000	7569.0000	-658503.00	57289761.00
2	110.00	-51.0000	2601.0000	-132651.00	6765201.00
3	115.00	-46.0000	2116.0000	-97336.00	4477456.00
4	117.00	-44.0000	1936.0000	-85184.00	3748096.00
5	123.00	-38.0000	1444.0000	-54872.00	2085136.00
6	127.00	-34.0000	1156.0000	-39304.00	1336336.00
7	145.00	-16.0000	256.0000	-4096.00	65536.00
8	170.00	9.0000	81.0000	729.00	6561.00
9	173.00	12.0000	144.0000	1728.00	20736.00
10	180.00	19.0000	361.0000	6859.00	130321.00
11	182.00	21.0000	441.0000	9261.00	194481.00
12	185.00	24.0000	576.0000	13824.00	331776.00
13	195.00	34.0000	1156.0000	39304.00	1336336.00
14	231.00	70.0000	4900.0000	343000.00	24010000.00
15	288.00	127.0000	16129.0000	2048383.00	260144641.00
Σ	2415.0	0.0	40866.0	1391142.0	361942374.0

Dari perhitungan di atas, kemudian dilanjutkan dengan pemilihan distribusi yang tepat dengan parameter sebagai berikut:

Tabel 3 Hasil Perhitungan Distribusi

S	yarat Pemi	lihan Distr	ibusi (Sr	i Harto)
No	Distribus i	Syarat	Nilai	Keteranga n
1	Normal	Cs = 0	0.7270	Tidak Memenuhi
		Ck = 3	4.3762	Tidak Memenuhi
2	Gumbel	Cs = 1,1396	0.7270	Tidak Memenuhi
		Ck = 5,4002	4.3762	Tidak Memenuhi
3	Log Normal	Cs = 3 Cv+Cv2 = 3	1.1193	Tidak Memenuhi
		Ck = 5,3833	4.3762	Tidak Memenuhi
3	Log Pearson	Cs ≠ 0	0.7270	Memenuhi

Karena analisis pemilihan jenis distribusi di tidak atas ada yang memenuhi syarat tersebut, maka digunakan distribusi Log Pearson Tipe III. Dengan nilai sifat statistikseperti tersebut di atas, diperoleh sebaran yang paling cocok yaitu distribusi Log-Pearson Tipe III begitu pula dengan durasi yang lainnya. Penggambaran data pada kertas probabilitas dilakukan dengan mengurutkan data hujan dari nilai terkecil sampai ke nilai terbesar kemudian diplotkan pada kertas probabilitas, disajikan pada Tabel di bawah ini.

Tabel 4 Analisis Statistik Data Hidrologi DAS Basohan dengan Log Pearson Tipe III

				(Log		(Log
N	Xi	Log	Log Xi -	Xi -	(Log Xi	Xi -
0	(mm)	Xi	Log X _{rerata}	Log	- Log	Log
U	(11111)	Ai	LOG Arerata	X_{rerata}	X_{rerata}) ³	X _{rerata})
)2		4
		1.869		0.099	-	0.009
1	74.00	2	-0.31468	02	0.03116	81
	110.0	2.041		0.020	-	0.000
2	0	4	-0.14252	31	0.00289	41
	115.0	2.060		0.015	-	0.000
3	0	7	-0.12321	18	0.00187	23
	117.0	2.068		0.013	-	0.000
4	0	2	-0.11572	39	0.00155	18
	123.0	2.089		0.008	-	0.000
5	0	9	-0.09400	84	0.00083	08
	127.0	2.103		0.006	-	0.000
6	0	8	-0.08011	42	0.00051	04
	145.0	2.161		0.000	-	0.000
7	0	4	-0.02254	51	0.00001	00
	170.0	2.230		0.002		0.000
8	0	4	0.04654	17	0.00010	00
	173.0	2.238	0.05414	0.002	0.00015	0.000
9	0	0	0.05414	93	0.00016	01
1	180.0	2.255	0.07126	0.005	0.00026	0.000
0	0	3	0.07136	09	0.00036	03
1	182.0 0	2.260	0.07616	0.005 80	0.00044	0.000
1	185.0	2.267	0.07010		0.00044	0.000
2	0	2.267	0.08326	0.006 93	0.00058	0.000
1	195.0	2.290	0.08320	0.011	0.00038	0.000
3	0	0	0.10613	26	0.00120	13
1	231.0	2.363	0.13015	0.032	0.00120	0.001
4	0	6	0.17970	29	0.00580	04
1	288.0	2.459		0.075		0.005
5	0	4	0.27548	89	0.02091	76
					-	
	2415.	32.75		0.306	0.00927	0.017
Σ	00	86	0.000000	03	0	800
	∑ Log X	i =	<u> </u>	I	<u>l</u>	
			32.7586			
	Log X _{rera}	_{ita} =	2.1839			
	Sd =		0.1479			
	Cs =					
			-0.2367			

Perhitungan Curah Hujan Rancangan

Curah hujan rancangan didefinisikan sebagai tinggi curah hujan yang secara statistik akan terjadi atau terlampaui satu kali dalam suatu kala ulang tertentu. Untuk memperkirakan besarnya curah hujan dengan kala ulang tertentu digunakan analisis frekuensi sebagai perhitungan peramalan atau suatu peristiwa hujan yang menggunakan data historis dan frekuensi kejadiannya. Hasil perhitungan curah hujan rancangan untuk berbagai kala ulang disajikan dalam tabel di bawah ini.

Tabel 5 Hasil Perhitungan Curah Hujan Rancangan

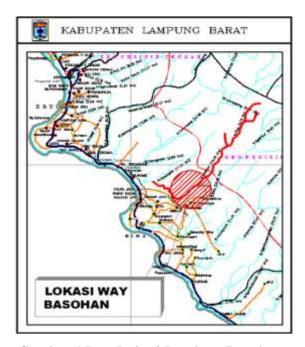
Kala	P	Log Xi	Sd	K	K . Sd	Log Xt	Xt
Ulang	(%)						(mm)
2	50	2.184	0.1479	0.0392	0.0058	2.1897	154.779
5	20	2.184	0.1479	0.8511	0.1258	2.3097	204.054
10	10	2.184	0.1479	1.2532	0.1853	2.3692	233.991
25	4	2.184	0.1479	1.6664	0.2464	2.4303	269.332
50	2	2.184	0.1479	1.9248	0.2846	2.4685	294.097
100	1	2.184	0.1479	2.1508	0.3180	2.5019	317.620
500	0.2	2.184	0.1479	2.4217	0.3581	2.5420	348.309
1000	0.1	2.184	0.1479	2.7604	0.4081	2.5920	390.873

Sumber: Hasil Perhitungan

Penentuan Besarnya Intensitas Hujan

Untuk keperluan pengalihragaman data hujan ke besaran debit banjir (hidrograf banjir) dengan metode hidrograf satuan, diperlukan data hujan jam-jaman. Distribusi hujan jam-jaman dapat diperoleh dari catatan stasiun hujan otomatis. Di daerah studi maupun di DAS terdekat tidak tersedia data hujan jam-jaman. Oleh sebab itu, hujan jam-

jaman akan diperkirakan berdasarkan karakteristik hujan secara umum hasil penyelidikan Van Breen di Indonesia, harian dimana hujan terkonsentrasi selama 4 jam dengan jumlah hujan sebesar 90% dari jumlah hujan selama 24 jam, dengan distribusi 10%, 40%, 40% dan 10%. Dengan anggapan bahwa hujan rancangan untuk berbagai kala ulang memiliki distribusi hujan jam-jaman yang sama seperti tersebut di atas, maka hujan jam-jaman sungai Basohan dapat ditentukan dengan menggunakan metode Mononobe seperti disajikan pada Tabel di bawah ini.


Tabel 4.6 Intensitas Hujan Jam-Jaman dengan Metode Mononobe DAS Basohan

Dur								
asi			k	Kala Ular	ng (tahun	1)		
(me								100
nit)	2	5	10	25	50	100	500	0
	281.	370.	425.	489.	534.	577.	632.	710.
5	252	791	190	409	410	154	919	263
	177.	233.	267.	308.	336.	363.	398.	447.
10	178	583	853	308	657	584	714	438
	135.	178.	204.	235.	256.	277.	304.	341.
15	212	258	410	283	917	466	276	459
	111.	147.	168.	194.	212.	229.	251.	281.
20	615	148	737	222	081	044	174	868
	65.0	85.6	98.2	113.	123.	133.	146.	164.
45	03	97	70	112	513	392	281	156
	53.6	70.7	81.1	93.3	101.	110.	120.	135.
60	59	42	20	72	958	113	752	508
	33.8	44.5	51.1	58.8	64.2	69.3	76.0	85.3
120	03	64	02	21	29	67	69	65
	25.7	34.0	38.9	44.8	49.0	52.9	58.0	65.1
180	96	09	98	89	16	37	51	45
	21.2	28.0	32.1	37.0	40.4	43.6	47.9	53.7
240	95	74	93	55	62	98	20	76
	18.3	24.1	27.7	31.9	34.8	37.6	41.2	46.3
300	51	93	43	33	69	58	97	43

Perhitungan Debit Banjir Rancangan Sungai Basohan

Di dalam perencanaan bangunan debit rencana pengairan, diperlukan mengetahui untuk kapasitas yang seharusnya dapat terjadi, agar semua debit air dapat ditampung dan teralirkan. Salah satu metode yang umum digunakan untuk memperkirakan laju aliran puncak (debit banjir atau debit rencana) yaitu Metode Rasional United States Soil Conservation Service (USSCS). Metode ini diaplikasikan dengan menggunakan parameter:

- a. Koefisien Pengaliran (c)
- b. Intensitas (I), dan
- c. Luas DAS (A)

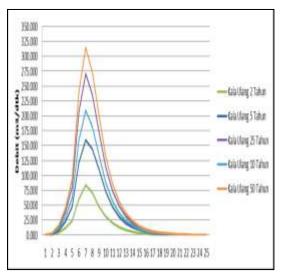
Gambar 4 Peta Lokasi Bendung Basohan

Hasil perhitungan debit banjir rancangan metode rasional pada lokasi penelitian Tabel di bawah ini menunjukkan perhitungan debit banjir Basohan rancangan DAS dengan menggunakan metode Rasional Mononobe.

Tabel 4.7 Hasil Perhitungan Debit Banjir Rancangan Basohan dengan Metode Rasional Mononobe

n	R	V	t	r		A	Qn
(Th	(mm)	(km/ja m)	(ja m)	(mm/ja m)	α	(km²)	(m³/de t)
2	154.7	1.8287	3.42	18.885	0.75	45	178.5
	788	1.0207	69	8	62	43	230
5	204.0	1.8287	3.42	24.898	0.75	45	235.3
3	539	1.0207	69	2	62	43	572
10	233.9	1.8287	3.42	28.551	0.75	45	269.8
10	908	1.0207	69	0	62	43	867
25	269.3	1.8287	3.42	32.863	0.75	45	310.6
23	320	1.0207	69	3	62	45	495
50	294.0	1.8287	3.42	35.885	0.75	45	333.1
30	970	1.0207	69	0	62	73	631
100	317.6	1.8287	3.42	38.755	0.75	45	366.3
100	198	1.0207	69	2	62	7	450

Hasil perhitungan debit banjir rancangan dengan menggunakan metode Haspers disajikan di bawah ini.

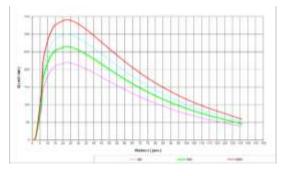

Tabel 4.8 Hasil Perhitungan Debit Banjir Rancangan Basohan dengan Metode Haspers

n	R_n	t	r		_	qt	Α	Qn
(Tahun)	(mm)	(jam)	(mm)	α	β	(m ³ /d/km ²)	(km ²)	(m ³ /dt)
2	154.7788	3.4269	77.8799	0.7562	0.8375	6.3129	45	179.9138
5	204.0539	3.4269	102.6736	0.7562	0.8375	8.3226	45	237.1908
10	233.9908	3.4269	117.7369	0.7562	0.8375	9.5437	45	271.9892
25	269.3320	3.4269	135.5195	0.7562	0.8375	10.9851	45	313.0696
50	294.0970	3.4269	147.9804	0.7562	0.8375	11.9952	45	341.1652
100	317.6198	3.4269	159.8164	0.7562	0.8375	12.9546	45	369.1990

Luas DPS	A	=	45.00	km2				
Panjang Sungai	L	=	27.40	km				
Koefisien Pengaliran	Koefisien Pengaliran C =							
Tenggang Waktu = Tg1 = 0	00 0					2.131	Jam	
Tenggang Waktu = Tg2 = 0	Untuk L>15 F	CM	=	1.989	Jam			
Tenggang Waktu = Tg =			=	1.989	Jam			
Satuan Waktu Hidro. = Tr = 0	,75*Tg				=	1.492	Jam	
Waktu awal s/d banjir = Tp = T	g+0.8*Tr				=	3.183	Jam	
Parameter Hidrograf = a = (1/T	rg)*0.47*(/	*L)^0.25			=	1.400		
Waktu turun 30% Qp = T0.3 = a	хТg				-	2.785	Jam	
Waktu turun Qpd.1 = Tp+T	0,3				=	5.968	Jam	
Waktu turun Qpd.2 = Tp+1	,5*T0,3				=	7.360	Jam	
Waktu turun Qpd.3 = Tp+2	,5*T0,3				=	10.145	Jam	
Debit Puncak = Qp = (C	A.Ro)/(3.6	*(0.3Tp+T0.3)			=	2.528	m3/det/mm	
Kurva Naik = Qt = Qp ((t/Tp)^2.4			Untuk 0	<t<tp< td=""><td></td><td></td><td></td></t<tp<>			
Kurva Turun = Qt = Qp ⁴		Untuk Tp < t < (Tp+T0,3)						
Kurva Turun = Qt = Qp ⁴	5*T0.3))							
Kurva Turun = Qt = Qp ⁴	va Turun = Qt = Qp*0.3^(((t-Tp)+1.5*T0.3)/(2*T				3)) Untuk t > (Tp + 2,5 T0.3)			

Tabel 4.9 Hasil Perhitungan Debit Banjir Rancangan Km. 105+392 dengan Metode HSS Nakayasu

Kala Ulang	t (jam)	U(t,1)	tl	t2	t3	Qtot
5 Tahun	3.183	2.528	122.018	27.519	10.400	159.937
10 Tahun	3.183	2.528	162.676	36.689	9.726	209.092
25 Tahun	3.183	2.528	244.887	55.231	14.641	314.759
50 Tahun	3.183	2.528	244.887	55.231	14.641	314.759
100 Tahun	3.183	2.528	277.433	62.571	16.587	356.591


Gambar 5. Hidrograf Satuan Sintetik Metode Nakayasu Sungai Basohan

Metode HSS Snyder

Data:											
A		45.00	km²								
L		27.40	km								
Lc	=	20.00	km								
L	-	Jarak antara	titik berat	daerah	pe	inge	iliran deng	an outlet			
		yang diukur i	epanjang	aliran	utar	ma					
Prosedu	ır P	erhitungan :									
t _e	=	C1. (F.	L _e) ⁿ		C,	=	koefisien	antara 0.75	5 - 3.0	2	3.00
	-	19.90	jam		C _o	-	koefisien	antara 0.9	0 - 1.40	34	1.00
q,	-	275 ° (0	. / t.)		n	=	koefisien	yang besar	mya 0.3	0	
-	=		m ³ /det/km	2							
dimana,											
t _o	=	time lag (jam)								
q.	-	debit puncak	unit hydro	graf (n	n3/	det/	km ²)				
L	-	panjang sun	pai (km)								
n,C_1,C_p	=	parameter ye	ang harus	dikalibi	asi						
L,		panjang sun	gal dari ba	g. terhi	ulu	san	npai ke titi	k berat dae	rah alira	ın (km	()
t.		t _o / 5.5					an oursele le	ujan efektif	(inex)		
4	-	3.62	lam	t,	æ	ian	ia cuian n	ијан енеми	quemy		
		3.62	jam								
Untuk la	ma	ourah hujan	efektif t	, > t,	h	aru	s diadaka	n koreksi			
£.'	÷	t, + 0.25	* (t.t)								
	-	-	iam								
Sehinga			,								
T _p		t," + 0.5 t.		т,		Per	sk time (jan	10			
	=	19.74	jam	t.	=	1	iam				
				h _{ett}	-	huj	an efektif, 1	mm			
Q,	=	q, .	herr	· A							
		0.622	m ³ /det/mi	m							

Tabel 10. Hasil Perhitungan Debit Banjir Rancangan Sungai Basohan dengan Metode HSS Snyder

t				
jam	Tr = 5 Thn	Tr = 10 Thn	Tr = 25 Thn	Tr = 50 Thn
0	0.0000	0.0000	0.0000	0.0000
2	3.4589	4.2239	4.7511	5.3672
4	39.3766	47.9178	53.9980	61.0249
8	157.6940	190.8824	215.7098	244.4674
10	180.5154	218.1402	246.7327	280.2727
14	206.5191	249.4336	282.2062	321.0642
22	219.4653	265.0200	299.8705	341.2429
25	217.7967	262.9416	297.5569	338.7814
40	189.4189	228.6085	258.7479	294.7475
54	157.2669	189.7663	214.8078	244.7711
74	114.8852	138.6172	156.9145	178.8287
136	37.7559	45.3061	51.4363	58.9159
	jam 0 2 4 8 10 14 22 25 40 54	jam Tr = 5 Thn 0 0.0000 2 3.4589 4 39.3766 8 157.6940 10 180.5154 14 206.5191 22 219.4653 25 217.7967 40 189.4189 54 157.2669 74 114.8852	jam Tr = 5 Thn Tr = 10 Thn 0 0.0000 0.0000 2 3.4589 4.2239 4 39.3766 47.9178 8 157.6940 190.8824 10 180.5154 218.1402 14 206.5191 249.4336 22 219.4653 265.0200 25 217.7967 262.9416 40 189.4189 228.6085 54 157.2669 189.7663 74 114.8852 138.6172	jam Tr = 5 Thn Tr = 10 Thn Tr = 25 Thn 0 0.0000 0.0000 0.0000 2 3.4589 4.2239 4.7511 4 39.3766 47.9178 53.9980 8 157.6940 190.8824 215.7098 10 180.5154 218.1402 246.7327 14 206.5191 249.4336 282.2062 22 219.4653 265.0200 299.8705 25 217.7967 262.9416 297.5569 40 189.4189 228.6085 258.7479 54 157.2669 189.7663 214.8078 74 114.8852 138.6172 156.9145

Gambar 6. Hidrograf Satuan Sintetik

Metode Snyder Debit Banjir

Rancangan untuk Sungai

Basohan

Perhitungan Rembesan

Titik Point	Garis Line	Panjang Rembesan				ΔH=
		Ver	Hor	1/3 Hor	Lw	Lw/C w
		(m)	(m)	(m)	(m)	(kN/m 2)
A0					0,00	0,00
	A0-A1	2,00	0,00	0,00		
A1					2,00	0,29
A2	A1-A2	0,00	0,29	0,10	2,10	0,30
AZ	A2-A3	3,00	0,00	0,00	2,10	0,30
A3		2,00	0,00	-,,,,	5,10	0,73
	A3-A4	0,00	0,22	0,07		
A4					5,17	0,74
	A4-A5	3,00	0,00	0,00		
A5					8,17	1,17
AJ	A5-A6	0,00	0,29	0,10	0,17	1,17
A6		.,,			8,27	1,18
	A6-A7	1,75	0,40	0,13		
A7	A7-A8	0,00	2,50	0,83	10,15	1,45
A8	A/-A0	0,00	2,30	0,63	10,98	1,57
	A8-A9	0,50	0,00	0,00	20,70	-,e :
A9					11,48	1,64
A 10	A9-A10	0,00	0,50	0,17	11.65	1.67
A10	A10-A11	0,25	0,00	0,00	11,65	1,67
A11	7110 7111	0,23	0,00	0,00	11,90	1,70
	A11-A	0,00	2,40	0,80		
A		4.50	0.00	0.00	12,70	1,82
В	A-B	1,50	0,00	0,00	14,20	2,03
ь	B-C	0,00	0,14	0,05	14,20	2,03
С					14,25	2,04
	C-D	2,75	0,00	0,00	45.00	2.12
D	D-E	0,00	0,22	0,07	17,00	2,43
Е	D-E	0,00	0,22	0,07	17,07	2,44
	E-F	2,75	0,00	0,00	.,	,
F					19,82	2,84
G	F-G	0,00	4,64	1,55	21.27	2.06
u	G-H	0,50	0,50	0,17	21,37	3,06
Н		0,00	-,,,,,	,	22,03	3,15
	H-I	0,00	1,00	0,33		
I	* *	0.75	0.00	0.00	22,37	3,20
J	I-J	0,75	0,00	0,00	23,12	3,31
	J-K	0,45	6,00	2,00	23,12	3,51
K					25,57	3,66
	K-L	1,20	0,50	0,17	2102	205
L	L-M	0,00	1,00	0,33	26,93	3,85
M	I1VI	0,00	1,00	0,55	27,27	3,90
	M-N	2,20	0,00	0,00		
N					29,47	4,22

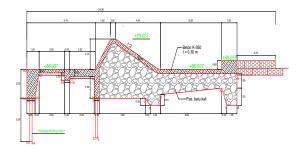
C = 3,00 (kerikil kasar termasuk berangkal)

 $\Delta h = 2,10 \text{ m}$

Lw = 29,47 m

Hw = El. muka air hulu - El. ambang kolam olak

= 91,1542 -86,937


= 4,2172 m

Cw = Lw/Hw

= 6,98732 > C (aman)

 $Lw > C.\Delta h$

29,47 > 6,3 (ok)

Gambar 7 Perhitungan Rembesan Metode Lane pada Bendung Basohan

Perhitungan Lantai Olak

Tinggi bendung (p) = 2,1 m Tinggi muka air di hulu (h1) = 2,1172 m

Tebal Lantai Olak:

Tebal lantai olak dipengaruhi oleh tinggi rencana bendung dan tinggi muka air di hulu bendung.

 $\begin{array}{rcl} a & = & (0,1\text{--}0,2)(0,6\,P+3\,H_1\cdot 1) \\ & = & 0,11\,x\,(0,6\,x\,2,1+3\,x\,2,1172\cdot 1) \\ & = & 0,7273 \\ \text{diambil} & & 0,8\quad m \end{array}$

Panjang Lantai Olak:

Dalam perhitungan panjang lantai olak, faktor-faktor yang mempengaruhi dasar perhitungannya adalah tinggi muka air di hulu bendung dan tinggi rencana dari bendung.

L = (1,0-2,0)(P+H1)-0,2.H1 = 1,1 x (2,1 + 2,1172) - 0,2 x 2,1172 = 4,2154 diambil 6,0 m

IV. KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil perhitungan dan analisis data diperoleh kesimpulan sebagai berikut.

- Kerusakan bendungan di lokasi penelitian diakibatkan banjir dan seepage,
- Hasil perhitungan curah hujan maksimum rancangan kala ulang 50 tahunan untuk stasiun Basohan adalah 294,097mm

- 3. Hasil perhitungan debit maksismum banjir rancangan dengan berbagai metode adalah sebesar 341,243 m³/dtk dengan metode HSS Snyder.
- 4. Berdasarkan data debit rancangan yang ada diperoleh ketinggian mercu yang dibutuhkan yaitu tipe bulat dengan elevasi 91,3076m di hulu dan 90,2958m di hilir bending.
- Hasil perhitungan panjang coveran untuk mengurangi energi rembesan yaitu sepanjang 3 m
- Hasil perhitungan rembesan di dasar tubuh bendung diperoleh sepanjang 29,47 m. Dengan demikian panjang konstruksi dasar bendungan minimal harus sepanjang 29,47m.
- 7. Untuk meredam aliran pada saat keluar, maka didesain kolam olakan sepanjang 6 m dengan tebal lantai olak sebesar 0,8m.